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Slippage of linear flows of entangled polymers on surfaces
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Using the microscopic boundary layer model [W. Sung, in Slow Dynamics in Condensed Matter, edited
by K. Kawasaki, M. Tokuyama, and T. Kawakatsu, AIP Conf. Proc. No. 256 (AIP, New York, 1992)
and W. Sung and Min Gyu Lee, Phys. Rev. E 51, 5855 (1995)], I show that there exists an appreciable
slippage of entangled polymers on a surface, under linear flow, even with a sizable amount of chains an-
chored on it. I find the critical anchorage above which the slip to no-slip transition occurs. I discuss the
similarities and differences between my results and those of de Gennes and co-workers [C.R. Acad. Sci.
(Paris) B 288, 219 (1979); 314, 873 (1992); Langmuir 8, 3033 (1992)].

PACS number(s): 61.41.+¢, 83.20.Lr, 83.10.Nn

Due to their long chain structure and the topological
constraints, entangled linear polymers either in solution
or in melt manifest a fascinating interplay of elasticity
and viscosity, namely, viscoelasticity. The molecular
description for the flow behaviors of entangled polymers
was given by the pioneering works of de Gennes [1] and
Doi and Edwards [2]. They envisioned the dynamics of
the chain entangled with the background as the reptation
in a cage modeled as a tube which undergoes constant re-
laxation. The relaxation time goes as N%(¢=3 in their
theories and ¢=3.4 in experiments), which means for a
large number N of Kuhn segments, the polymers show
very slow dynamics, giving rise to very high viscosity.

Compared with the remarkable advances made in un-
derstanding the bulk flow properties, little theoretical
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FIG. 1. The extrapolation (slip) length /; characterizes the
slippage.
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work on the boundary effects of flow caused by the entan-
glement has been done, despite it numerous industrial ap-
plications. Unlike the fluids of small molecules, the
liquids of entangled polymers suffer appreciable slippage
on the surface even if the flow is linear, i.e., in the rela-
tion between stress and shear rate. The slippage is
characterized by the extrapolation (or the slip) length /,
i.e., the distance from the surface at which the velocity
profile extrapolates to zero (Fig. 1). Considering ideal
solid surfaces without chain anchorage, de Gennes first
showed the slip length [3] is given by

L=T1~"T 1)
k 7700

where k is the frictional force per unit area, and 7, and [,
are the microscopic shear viscosity and length charac-
teristic of the monomers. Depending upon 7, the viscosi-
ty of the polymer which, according to the theory [1,2],
scales as p~N3/N? (N, is the segmental number be-
tween entanglements), /;, can be macroscopically large.
The suppression of slippage due to the chains grafted
onto the surface was also investigated theoretically [4-6];
if the number of grafted chains per unit area is v, the slip
length is reduced to

I, ~(vR,)" 1, )

where R, is the average length of a grafted chain. The
large slip length and its reduction due to grafted chains is
qualitatively in accord with experiments [7-9].

In this paper, a focus is put on the slippage problem in
linear and steady-state Couette flow. On a theoretical
basis somewhat different from that of de Gennes and his
collaborators, I derive the slip length, Eq. (14), which car-
ries finer details on the anchored chains as I discuss
below. I find there exists a critical anchorage given by
Eq. (19), above which the transition to no slip does occur.

I apply the microscopic boundary layer model
developed recently by Sung and Lee for dynamics of a
spherical particle of radius R in entangled polymers
[10,11]. The R — o limit corresponds precisely to the
stationary planar surface on which the polymers flow.

5862 ©1995 The American Physical Society



51 SLIPPAGE OF LINEAR FLOWS OF ENTANGLED POLYMERS ...

FIG. 2. An elastically effective surface chain (ESC) on sur-
face [the chain from g (grafted) to e (entangled)]. The crossed
out dangling chains and loops are not counted as such.

According to the model, the frictional force on the sur-
face is dominated by the elastically effective surface chains
(ESC’s), which, by definition, remain anchored on the
surface and entangled with neighboring chains at both
ends, respectively, under the linear flow. Because the
dangling chains and the loops not engaged with entangle-
ments are not counted as such, the ESC is modeled as a
random walk which avoids crossing the surface on the
way (Fig. 2). The probability density of the end-to-end
distance 7 of an ESC with N, segments is given by

3r2

2N,b?

PNS(?)~z exp , (3)

as can be obtained by the image method [11,12]. Here z
is the component of 7 normal to the surface and b is the
Kuhn segmental length.

The most probable value for z is obtained from Eq. (3)
as

a=(1N,b})'2, @)

which I call the boundary layer size [11]. Suppose that
the entangled end ( the point e in Fig. 2) of an ESC is dis-
placed by small distance 6x along the x axis (along the
direction of flow) away from its most probable (normal)
position 7,=(0,0,a). Then the entropic force incurred
the ESC with the other end permanently anchored (graft-
ed) is given by

FIZ_KSX N (5)
where
d? .
K:—kBT ﬁlnPNs(r) -
kT
== (©6)
a

The entanglement can sustain this force only during
the reptation time 7~ N?¢ of background chains. There-
fore for the linear, steady-state flow of entangled poly-
mers directed along the x axis, the average force can be
written as

F1=_K7'ua . (7)

Here u,, the average velocity of the entanglement located
at 7,, can be identified with the fluid velocity at that
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point. If the surface density of these permanently an-
chored ESC’s is denoted as a;, they give rise to the force
per unit area of the x-y plane at z=a:

:71=a1K’rua . (8)

It is conceivable that there are also ESC’s with the an-
chored ends which can slide on the surface. The force on
the surface due to this type of ESC’s distributed with sur-
face density a, is given as

Fy=a,Kr(u, —v) . )

The v is the average velocity of the chain slippage. This
is proportional to u,, so Eq. (9) can be replaced by

.7226_121(7'11‘1 N (10)

with @, <a,.
In sum, the force per unit area on the surface due to
ESC’s is

F=(F+F)
=(a;+a,)Kru,
=aKTu, . (11)

The a=a,;+a,, termed hereafter the effective (per-
manent) anchorage, is regarded as a constant in the
steady flow I consider here. In addition to Eq. (11), it is
essential for the problem of slippage to consider the mi-
croscopic frictional force due to monomeric collision
with the surface, ku,, where k is the frictional coefficient
per unit area and u, is the average velocity on the sur-
face. Incorporating this force per unit area ku,=E&u,,
the total force per unit area on the surface at z=a is
given by

F=aKru,+&u, . (12)

In the model given in [10,11], the background poly-
mers beyond the boundary layer are treated as a continu-
um, according to which the force, Eq. (12), can be
matched to the hydrodynamics stress extrapolated to the
surface z =a:

F=—0,,
Qu
9z

=y . (13)

a

Matching Eq. (12) to (13) yields my main result for the
slip length [13],

J =
"~ (du/dz),
=—1 4. (14)
E+aKT
When a=0, Eq. (14) is reduced to
19=1_4 . (15)
£

The £ is the coefficient of monomeric friction per unit
area in the same order of magnitude as k, and is given as
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E==mny/1, where [, is the mean free path of the monomers
in collision with the surface. Since 7/1,~N>?/NZ, and
thus 7/&>>a for a very large N, I find

0~ (16)

which is essentially the de Gennes result, Eq. (1).
Equation (14) predicts that for the chain anchorage a
above the critical value

-1
¢ Kra

G
=— 17
Xa (17)
the slippage diminishes, i.e., I, =0. Here G=7/7 is the
plateau modulus given by

G=nkyT , (18)

where n is the volume density of the chains between the
entanglements in the bulk. Using Eq. (18) as well as Eq.
(6), we find

a,=na

N, ’ (19)
where c is the polymer concentration in the bulk.

Figure 3 shows schematically the variation of the slip
length /; as a function of a given by Eq. (14). The slip
length can have the same order of magnitude as [2, which
can be macroscopically large, provided that « is less than
the crossover anchorage defined by

ay = X7
Mo a?
~——np
n I
Ne ca2
— 20
N 1, (20)
From Eqgs. (19) and (20), one finds the ratio
a
1/2 2@_{1_ , 21)
o, n lO

which is negligibly small for entangled polymers because
of the high viscosity 7. This means that, for most of the
range of the chain anchorage, the slippage is suppressed
due to ESC’s, leading to

n

I~ -

S aKT a
2

=1 _,. (22)
a

With o much smaller than a., Eq. (22) is reduced to

1=~ , (23)
a

which, with N =a 3, is comparable to but is not neces-
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FIG. 3. The slip length I, vs the effective anchorage a
(schematic). The «a. is the critical anchorage [Eq. (19)] below
which the transition from no slip to slip occurs. The a,,, [Eq.
(20)] is the crossover anchorage, above which slippage is mainly
due to ESC’s.

sarily the same as Eq. (2). Note that the a and a defined
here in terms of ESC’s can differ, respectively, from v and
R, in Eq. (2), defined in terms of grafted chains [14], and
also, Eq. (23) is valid under a restriction mentioned
above. .

For N=2000, N,=200, [,=3 A corresponding to po-
lystyrene melt (M ~10°) [3], and for a~100 A and
n=~a 3 the following estimations can be made:

~a ?=102/cm? ,

aC‘

2

e 8 2
a;,~——=10°/cm* ,
172 N3lya
19=60 um ,

[{~1 pm, with a=10"%/cm? .

Since a, ,,/a. << 1, the suppression effect of the chain an-
chorage on slippage is strong (in accord with de Gennes
and his collaborators [4,5]), but nevertheless, with appre-
ciable anchorage, the slip length (/?) can remain much
larger (~1 um in our numerical estimation) than usually
expected (at variance with them [4,5]).

In conclusion, as I demonstrated using the microscopic
boundary layer model, a large slippage of an entangled-
polymer liquid on a surface can occur due to its high
viscosity. With the chains anchored on the surface and
entangled with the background, the slippage is
suppressed, yet operative appreciably due to their high
fexibility. 1t is possible to say that the slippage of entan-
gled polymers is another manifestation of their viscoelas-
ticity. The transition to no slip does occur above a criti-
cal anchorage given by Eq. (19).
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